Impact of 4Ds on Blueprint Scenarios

J. Richard Kuzmyak, Transportation Consultant, LLC Caliper Corporation

Assessment of Initial Scenario Results

VMT Benefits attributable to:

- Jobs/housing balance
- Targeted elimination of longest commutes
- Greatly improved transit service
- Significant clustering around transit nodes

Preliminary Assessment:

- Primary impact is on commute travel
- Have not yet tapped land use (4D) effects

What Are the "4Ds"

Local Land Use:

- 1. Density
- 2. Diversity (mix and balance)
- 3. Design (walkability, connectivity)

Surrounding Land Use

4. Regional Accessibility

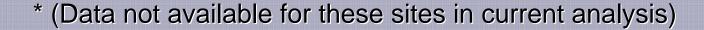
How the 4Ds Impact Travel

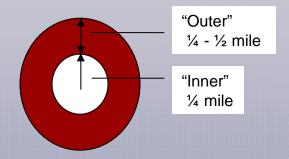
- Lower auto ownership rates due to:
 - Better regional accessibility especially transit
 - More local opportunities lessen need for auto dependence
- Reduced vehicle miles of travel due to:
 - Fewer autos owned
 - More trips by walking
 - Shorter auto trips
- Local land use provides more alternatives for non-work travel

Key Findings from Solimar South Bay Cities Study

People who live in mixed-use centers:

- Make a high percent of their non-work trips to neighborhood center
- A high percentage of neighborhood center trips are by walk or bike
- Result is virtually independent of commuting behavior: most still drive long distances to work place


South Bay Cities Study Sites


Centers:

- Old Town Torrance
- Inglewood downtown
- Riviera Village (Redondo Beach)
- El Segundo downtown*

Corridors:

- Pacific Coast Highway
- Hawthorne*
- Artesia*
- Gardena*

Weekly Trips by Purpose: Overall and to Town Center

	Eat	Meal	Groce	ry Shop	Persoi	nal Shop	Entert	ain/Recr	Sc	hool
	<u>All</u>	Center	<u>All</u>	Center	<u>All</u>	Center	<u>All</u>	Center	<u>All</u>	Center
TORi	3.32	1.92	1.88	1.64	2.23	1.49	1.80	1.16	0.83	0.55
TORo	3.45	1.66	2.19	1.54	1,83	1.22	1.84	0.82	1.70	1.13
INGi	1.80	1.30	3.20	2.40	2.60	0.75	2.33	0.25	1.25	0.00
INGo	2.31	1.18	2.30	1.80	2.08	1.43	1.34	0.52	1.51	0.96
RIVi	3.13	1.78	2.61	2.20	1.86	1.39	1.60	1.50	1.41	0.92
RIVo	3.15	1.85	2.63	2.29	2.04	1.59	1.65	1.56	0.77	0.18
PCH	3.00	1.99	2.35	1.71	2.30	1.70	1.48	1.48	2.26	1.61

Percent of Trips to Neighborhood Center by Mode

	<u>Auto</u>	<u>Transit</u>	Walk/Bike/Other
TORi	39%	0%	61%
TORo	65%	1%	34%
INGi	43%	14%	43%
INGo	69%	0%	31%
RIVi	28%	0%	72%
RIVo	51%	0%	49%
PCH	73%	0%	26%

Commuting Behavior Quite Different from Non-Work

	Unemp, Retired, Work at <u>Home</u>	<u>Auto</u>	<u>Transit</u>	Walk/ Other	Work > 10 min from Home	Free <u>Parking</u>
TORi	21%	71%	2%	6%	97%	97%
TORo	15%	75%	0%	10%	83%	92%
INGi	50%	50%	0%	0%	67%	100%
INGo	28%	68%	0%	4%	90%	71%
RIVi	33%	65%	0%	2%	94%	91%
RIVo	24%	72%	1%	3%	94%	95%
PCH	29%	68%	2%	1%	92%	92%

Limitations in Using SBC Results in 4Ds Analysis

- No real "control" situations to compare against
- Samples are for individuals, not households, and do not account for key household characteristics
- Proportions are user estimated, not derived from actual trip data
- Not currently tied to any quantitative 4D measures

Other Approaches Considered

- SCAG VMT TAZ level regression model based on density and TOD (SungHo Ryu)
 - > Good impacts but density a coarse measure of land use
- Adopt Mark Futterman approach
 - > Only increases walk share by 2 to 4%; already being used?
- Compare places with SG characteristics with non-SG, develop adjustment factors
 - > Still investigating difficulty identifying example sites
- Reduce average trip length assumptions in TAZs with SG activity
 - > Still a possibility may be shorter in SG zones
- Reduce average trip lengths in non-work trip tables by adjusting friction factors
 - > Still a possibility but risks tampering with SCAG model integrity
- Apply VMT model approach, but with Baltimore coefficients
 - > Argument that LA coefficients smaller because can't find enough local samples
 - > Transferability is always a cautious process

Current Recommended Approach

- "Post-Processor" Apply VMT factoring methods to account for 4D effects
- "Pivot" off of first stage forecasts performed with SCAG regional model
- Estimate changes in household auto ownership and VMT corresponding to land use <u>and</u> demographics
- Develop net VMT adjustment ratio for each TAZ, and for each scenario

Our Land Use Measures

Regional Accessibility:

- Summation of total jobs in each TAZ divided by peak period travel time from origin TAZ to that TAZ
- > Our measure: Total jobs by auto PLUS total jobs by transit

Diversity:

Land Use Mix: Proportionate balance of 12 land uses within ¼ mile of household

Design:

- Walk Opportunities: Summation of all retail and service activities within ¼ mile of household, divided by walk time
- Activities assigned SIC-based value weight adapted from 1984 survey of LA neighborhoods by Bannerjee & Baer

Vehicle & DVMT Models for SCAG Region (2001 HTS)

/ehicles per Household	Daily Household Driver VMT
------------------------	----------------------------

				Baltimore				Baltimore
	Coeff	<u>Mean</u>	Elasticity	<u>2005</u>	Coeff	<u>Mean</u>	Elasticity	<u>2005</u>
Constant	0.7910				15.828			
HH Size	0.234	2.488	0.302	0.292	5.016	2.493	0.232	0.129
Workers	[39.83]				[10.18] 7.437	1.283	0.177	0.243
VVOIKEIS					[8.76]	1.203	0.177	0.243
Income	0.1708	4.556	0.405	0.578	3.591	4.563	0.304	0.37
	[38.39]				[10.05]			
Vehicles					7.137	1.946	0.258	0.333
					[9.72]			
Reg Access	-0.000001 [-9.45]	173767	-0.090	-0.228	-0.00007 [-10.56]	173438	-0.226	-0.127
LU Mix	-0.1734	0.2595	-0.023	-0.173	-8.469	0.2597	-0.041	-0.089
	[-3.57]				[-2.41]			
Walk Opps	-0.14878	0.071	-0.006	-0.396	-0.0628	0.0828	-0.0001	-0.097
	[-3.10]				[-0.023]			
R-squared	0.255				0.1026			
# Observ	10,377	(HHs wi	ith DVMT <	300 miles)	10,133	(HHs wi	th DVMT <	300 miles)
	Vehicles	1.922			HH VMT	53.804		

Current and Forecast Values for SED and Policy Variables

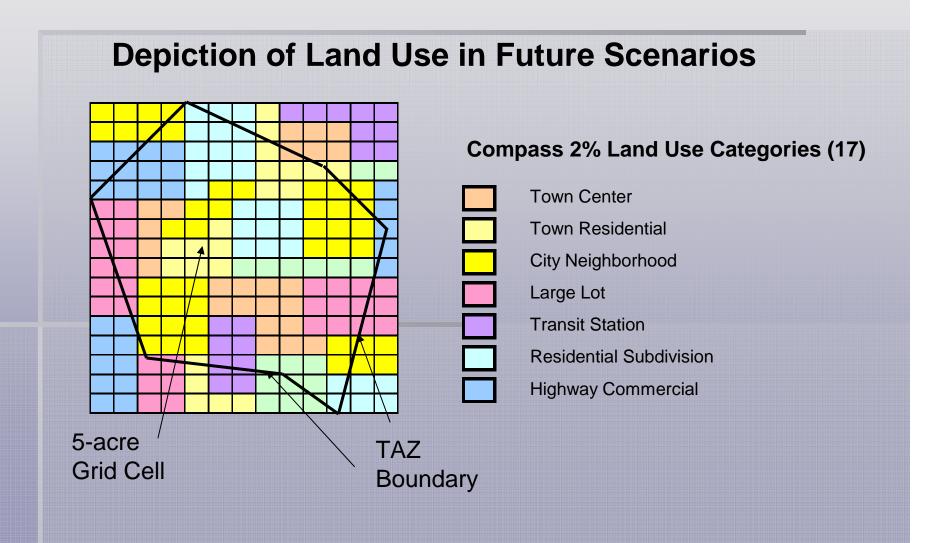
		2001	Scenarios Typical			
	Mean	<u>Min</u>	<u>Max</u>	Std. Dev	SG Area	non-SG
HH Size	2.488	1	9	1.390	?	?
Workers	1.283	0	6	0.853	?	?
Income	4.556	1	8	1.831	?	?
Vehicles	1.922	0	8	0.956	calc	calc
Reg Access	173,767	24,578	538,364	91,072	700k+	300k
LU Mix	0.2595	0	0.821	0.171	0.8	<0.1
Walk Opps	0.071	0	6.645	0.188	5+	<0.1

Example: SG & Current SED

	H	H Vehicles	3	HH Daily V	Daily VMT		
	Coeff	<u>Mean</u>	<u>TEST</u>	Coeff	<u>Mean</u>	<u>TEST</u>	
Constant	0.7910		0.7910	15.828		15.828	
HH Size	0.234 [39.83]	2.488	2.488	5.016 [10.18]	2.493	2.488	
Workers				7.437 [8.76]	1.283	1.283	
Income	0.1708 [38.39]	4.556	4.556	3.591 [10.05]	4.563	4.556	
Vehicles		1.922	1.117	7.137 [9.72]	1.946	1.117	
Reg Access	-0.000001 [-9.45]	173767	300000	-0.00007 [-10.56]	173438	300000	
LU Mix	-0.1734 [-3.57]	0.2595	0.800	-8.469 [-2.41]	0.2597	0.800	
Wtd Opps	-0.14878 [-3.10]	0.071	4.000	-0.0628 [-0.023]	0.0828	4.000	
				HH VMT	53.80	34.18	

Example: Non-SG & Current SED

	HI	H Vehicles			HH Daily V	MT
Constant	<u>Coeff</u> 0.7910	<u>Mean</u>	TEST 0.7910	<u>Coeff</u> 15.828	<u>Mean</u>	TEST 15.828
HH Size	0.234 [39.83]	2.488	2.488	5.016 [10.18]	2.493	2.488
Workers	•			7.437 [8.76]	1.283	1.283
Income	0.1708 [38.39]	4.556	4.556	3.591 [10.05]	4.563	4.556
Vehicles		1.922	2.077	7.137 [9.72]	1.946	2.077
Reg Access	-0.000001 [-9.45]	173767	50000	-0.00007 [-10.56]	173438	50000
LU Mix	-0.1734 [-3.57]	0.2595	0.100	-8.469 [-2.41]	0.2597	0.100
Wtd Opps	-0.14878 [-3.10]	0.071	0.050	-0.0628 [-0.023]	0.0828	0.050
				HH VMT	53.80	64.71


Example: SG & Larger HHs

	Н	H Vehicles	5	HH Daily VMT			
	Coeff	<u>Mean</u>	TEST	Coeff	<u>Mean</u>	<u>TEST</u>	
Constant	0.7910		0.7910	15.828		15.828	
HH Size	0.234	2.488	3.000	5.016	2.493	3.000	
	[39.83]			[10.18]			
Workers				7.437	1.283	1.36	
				[8.76]			
Income	0.1708	4.556	4.556	3.591	4.563	4.556	
	[38.39]			[10.05]			
Vehicles		1.922	1.237	7.137	1.946	1.237	
				[9.72]			
Reg Access	-0.000001	173767	300000	-0.00007	173438	300000	
	[-9.45]			[-10.56]			
LU Mix	-0.1734	0.2595	0.800	-8.469	0.2597	0.800	
	[-3.57]			[-2.41]			
Wtd Opps	-0.14878	0.071	4.000	-0.0628	0.0828	4.000	
	[-3.10]			[-0.023]			
				HH VMT	53.80	38.18	

Example: Non-SG & Larger HHs

	H	H Vehicles		ŀ	HH Daily VI	МТ
	Coeff	<u>Mean</u>	<u>TEST</u>	Coeff	Mean	TEST
Constant	0.7910		0.7910	15.828		15.828
HH Size	0.234 [39.83]	2.488	3.000	5.016 [10.18]	2.493	3.000
Workers	[00.00]			7.437 [8.76]	1.283	1.36
Income	0.1708 [38.39]	4.556	4.556	3.591 [10.05]	4.563	4.556
Vehicles		1.922	2.077	7.137 [9.72]	1.946	2.077
Reg Access	-0.000001 [-9.45]	173767	50000	-0.00007 [-10.56]	173438	50000
LU Mix	-0.1734 [-3.57]	0.2595	0.100	-8.469 [-2.41]	0.2597	0.100
Wtd Opps	-0.14878 [-3.10]	0.071	0.050	-0.0628 [-0.023]	0.0828	0.050
				HH VMT	53.80	68.70

Application to Forecasting

Values of 4D Variables for Individual Grid Cells

Development Type	Resid	<u>Empl</u>	Ret/Svc	Reg Acc	<u>LU Mix</u>	Walk Opps
Downtown Center	8%	75%	17%		Low	M High
Downtown Residential	57%	0%	43%	ate	M High	High
City Center	38%	24%	38%	ina	High	High
City Residential	72%	5%	23%	coordinate	M High	High
Town Center	60%	20%	20%	Ö	M High	High
Town Residential	95%	0%	5%	X,Y	Low	Med
City Neighborhood	95%	0%	5%	by ›	Low	Med
Residential Subdiv	100%	0%	0%	cell b	Poor	Poor
Large Lot	100%	0%	0%	95 -	Poor	Poor
Rural Cluster	100%	0%	0%	each	Poor	Poor
Activity Center	35%	50%	15%		M High	M High
Transit Station	80%	4%	16%	for	M High	M High
Transit Corridor	87%	0%	13%	Calculated	M High	M High
Main Street	60%	0%	40%	ılat	M High	High
Office Park	0%	100%	0%	alcı	Poor	Poor
Industrial	0%	100%	0%	Ö	Poor	Poor
Highway Commmerc	45%	0%	55%		Med	Low

Calculating VMT for TAZ

```
VMT, TAZ i =
SUM (VMT, Grid Cell j x Households, Grid Cell j)

over all cells in TAZ i

Where

VMT in Grid Cell j =
f (HH Size, Income, Workers, Vehicles,
Regional Accessibility, LU Mix, and Walk Opps)
```

Do this for each TAZ in all scenarios - GV 2% & Base

Next Steps

- Try some additional model formulations
 - Study selected "smart growth" areas
 - Test additional variable formulations
 - Test apply elasticities from Baltimore model
- Conduct Analysis for RTP
 - Estimate VMT effects for all scenarios
 - Compare key differences across scenarios
 - Recommend final adjustments